第6話 嘘から出た実
講義の準備のために高橋教授が教卓でパソコンをケーブルにつなでいる。
そして、すらりとした美女の座る中央最前列の席あたりをそれとなく見やる。
天然パーマの良く似合う細面の美女の左隣で、白いマスクをした浜口が、他人に覗かれないように気を配りながらプリントを熱心に見入っている。
プリント内容をしっかり覚えておいて自信たっぷりの余裕の表情でクォーターに格好良いところを見せようと思っていたのだが断念したところだ。
プリント内容はメガトンからメールで送付されてきた想定問題と答えだ。
もちろん詳細な解説も付いている。
メガトンは律儀に浜口の望みに応えたのだ。
高橋教授は、昨夕『小テストの実施』を頼みに来た山田とのやり取りを思い出しながら浜口を注視する。
──あのラッキョウみたいな学生、本当に勉強する気になったみたいだ。今週も、一番前の席に陣取っている。
浜口が最前列に座る最大の理由は、美女の息づかいをわくわくしながら感じ取りたいからだ。
けれど、朴念仁の高橋教授はそんなことには気が付かない。
たんたんと講義を進めていく。
しかし、高橋教授が頑張って講義しているものの、極限の概念の理解は誰にとっても容易ではない。
オランダ坂女子高等学校始まって以来の才色兼備の神童と謳われたクォーターも戸惑っている。
しかし、クォーターは、『自分の理解できないことは、他の学生も理解困難だ』と信じている。
『自分だけが理解できない』と一人で悶々と悩み続けたメガトンとは大違いだ。
一方、浜口は、あれほど嫌悪した高橋節に親しみを感じ始めている。
意外にもメガトンから送付された想定問題が講義の急所を分かりやすく突いているのだ。
それが講義の理解に大いに役立っている。
苦労して苦労して分かり掛けている人間の解説はぎこちない。
けれど、よく理解している玄人の解説よりも馬鹿丁寧で分かりやすいのだ。
浜口はクォーターからの質問をうまく答えられそうだとニコニコ顔だ。
講義終了まであと10分。
突如、高橋節が止まった。
高橋教授がパソコンを操作した。すると、スクリーンに『数列anの収束の定義[注6]』が大きく映し出された。
教科書の『解析概論』の記述そのままだ。
その下に、『数列anが実数aに収束しないとの定義を書け』との問題が映し出された。
十数枚の解答用紙を高橋教授から受け取った浜口は、嬉しそうにその一枚を隣のクォーターに手渡し、残りを後ろの席に回す。
浜口の顔が上気して赤い。
解答用紙を手渡したときにクォーターの形良くマニキュアを塗ったように輝く指の爪に軽く触れたからだ。
その感触にどぎまぎしながら、メガトンからのメモを横目に浜口は解答をさらさらっと書く。
ぴったしの『○×』問題があったのだ。その解説を写せば小テストの解答だ。
教室は静かだ。
聡明なクォーターでさえ、収束の定義を見詰めながら頭を悩ませている。
他の学生が氏名を書いただけで呆然としている間、浜口はメガトン作成の『○×』問題の解答と解説を何度も読んで覚え込む。
得意満面だ。
これさえ覚えれば美女に格好良く見せられると思えば、面倒なこともまるで苦にならない。
もちろん、答えだけではなくメガトンが書いた解説にもしっかり目を通す。
講義が終わった。
小テストにうまく解答できなかった学生達のため息が教室に充満する。
解答用紙が後ろから送られてくる。
それらを受け取り白紙解答のクォーターが浜口の解答用紙に手を伸ばす。
浜口は、ことさら解答がよく見えるように表を上にしてクォーターに手渡す。
クォーターは浜口の解答用紙の下に自分の解答用紙を裏返しにして、そっと忍ばせ教卓に運ぶ。
白紙解答が目立っては恥ずかしいのだ。
高橋教授は、パソコンを片付けると、集めた解答用紙を黒い紙箱に納め教室を出て行く。
高橋教授の姿が見えなくなった途端、クォーターが質問を発する。
「シン先輩、どんな解答をしたの? 残念だけれど私は白紙よ。お手上げ状態だわ」
つかつかっと教壇を上り、ホワイトボードに黒いマーカーで浜口が誇らしげに解答を書く。
しかし、クォーターは納得できない。
さらに質問が飛ぶ。
質問は浜口がメガトンに何度もメールで問い合わせた内容の一部だ。
メガトンから送付された受け売りの問題で浜口がクォーターに逆襲する。
「『鵜の木学園所属の女子学生の体重はみんな60kg未満だ』の否定文は何だと思う?」
しばらく考えてクォーターが自信なげに答える。
「『鵜の木学園に所属しない男子学生のうち少なくとも1人の体重は60kg以上だ』かしら?」
クォーターの解答は、浜口がメガトンに最初に回答した結果と同一だ。
それを思い出しながら浜口は余裕の笑みで解説する。
「高橋先生に習ったように、『すべてのxで成立する』の否定は、『少なくとも1つのxで成立しない』だ。だから、『少なくとも1人の体重は60kg以上だ』の部分は正解だ」
クォーターは長い睫毛の目をぱっちりさせて尋ねる。
「では、私のどこがおかしいの?」
浜口は自信満々だ。
「『AはBである』の否定は、単純に『AはBではない』だ。つまり、Aを否定してはいけない」
そんなことかと、ため息をつきながらクォーターが解答し直す。
「正解は、『鵜の木学園所属の女子学生のうち少なくとも1人の体重は60kg以上だ』なのね」
浜口が偉そうに頷く。
「その通りだ。それが正解だ。よく出来た。さすがに秀才の誉が高いクォーターだ」
あまりにも完璧にすらすら答える浜口にクォーターは違和感を抱く。
「シン先輩、去年は再履修も不合格だったのでしょう。こんなに良く出来るのに何で失敗したの? 不思議だわ」
クォーターの疑念の声に浜口の目が泳ぐ。
浜口は感情が素直に表情に出るのだ。
自信に満ちた態度が急変するのを見て、クォーターは浜口の後ろに強力な応援団がいるのを悟る。
──多分、山田先輩が浜口先輩の後ろ盾だわ。でも知らんふりをして、浜口先輩にいろいろ質問した方がいいみたいね。そうでないと、浜口先輩は確実に落第だもの。
一方、翌日、メガトンが無邪気に浜口に質問する。
「ねええ、シンちゃん。高橋先生、『○×』問題出した? どんな問題だった」
メガトンの質問に山田がどきりとする。
──高橋先生、小テストをやってくれなかったらどうしよう。シンちゃんの嘘がばれてしまう。
だが浜口の返事に胸を撫でおろす。
「彩の主張した『○×』問題ではなかったけれど、簡単な小テストがあった。それがすごいのだ」
薄い口紅が映える彩が尋ねる。
「何がすごいの?」
「メガトンの予想問題が的中だ。だから、来週の分もお願いするよ、メガトン」
メガトンが黒髪のお高祖頭巾で覆った童顔をほころばす。
「いろいろ予想したわ。その中で、どんな問題が出たの?」
「『収束しない定義を述べよ』だ」
彩がびっくりする。
「そんな定義、本当にあるの?」
浜口が意気揚々と答える。
彩ができない問題をうまく解答できるのが嬉しいのだ。
もちろん初めての経験だ。
それにもう一人の美女にもいい格好ができたと、ご機嫌なのだ。
「クォーターも出来なかったらしい。これ、結構難しいのだな、きっと。……高橋先生も良い問題を出すな。俺、すっかり見直したよ」
彩が浜口の変わりように唖然とする。
一方、長い黒髪をかき上げる彩の右手に、浜口は女らしさを感じる。
そして、『この次までに考えておく』とクォーターに約束した質問を思い出す。
しかし、クォーターからの質問の答えが欲しいとはさすがに言いにくい。
あたかも自分の質問のように三人に尋ねる。
「でも、収束の定義は『限りなく一定の値に近づく』では、どうしていけないのだろう? 高校では、そう習ったはずだ。俺、まえからずっと疑問に思っていたのだ」
彩が即答する。
「高校で習った定義は直感的、大学で習った定義は論理的。それだけの違いよ。定義だから素直に覚えればいい。ただそれだけのことよ。いつも言っているように、そんなことを悩むのは馬鹿げているわ」
浜口も彩と実際は同意見だ。
けれど、これでは憧れのクォーターに回答できない。
さらに突っ込む。
「なぜ論理的な定義が必要なのだろう? ヤマちゃん、どう思う?」
詮索好きのメガトンなら答えられると、山田は話を振る。
「メガトン。出番だ!」
一年生の時に悩み続けたメガトンが即答する。
「無限のものを無限のまま扱うのは人間には困難なのよ。『論理的な収束の定義』は、無限のものを有限の世界で考えればよいように魔法を掛けてくれるの。これ、すぐれものよ。神様の世界を人間が扱えるようにしているのですものね」
『論理的な収束の定義』は、山田も、ずっともやもやしていた内容だ。
メガトンにずばりと切り込む。
「無限のまま扱うのが困難って具体的には一体どんなことだい?」
「例えば無限個の実数の集合には必ずしも最大値は存在しないわ」
山田がメガトンに同調する。
「それって、『自然数全体の集合には最大値が存在しない』みたいなことだね」
「そうね。けれど、どんな大きな集合でも有限個なら必ず最大値がある。例えば、この違いだわ」
この回答だけでは、浜口はクォーターに説明できる自信がない。
真剣な顔で、納得顔の山田に代わって質問する。
「有限個と無限個の性質の違いは分かった気がする。でも、これと『論理的な収束の定義』とは、どんな関係があるのだ?」
メガトンは、さも当然そうにあっさり答える。
「収束する数列は有界であるという定理の証明を考えれば分かるはずよ」
山田がメガトンの回答内容を確認する。
「収束する数列の各項は、必ずある値以上で、ある値以下というやつかい」
彩もこの定理を思い出す。
「メガトンが言っているのは、収束する数列の各項の絶対値はすべてある値以下という定理のことね。解析概論にわざわざ書いてあったけれど、これって自明の定理だわ。直感的にすぐ理解できるわ」
今までの議論だけでは、浜口はクォーターにまだ説明できない。
この場で準備完了にしたいと質問を重ねる。
「なぜ、『限りなく近づく』では駄目なのだ?」
『自分の理解したことは他人も容易に理解する』との考えは間違っていると、メガトンは初めて気付く。
どうしたら浜口に分かってもらえるかと考えながら答える。
「数列がaに収束するとするわ。すると、収束の論理的な定義からある自然数Nよりも大きなすべてのnに対してanはaの近辺にあるわ。つまり、自然数Nよりも大きい無限個の自然数nに対してanは有界。a1からaNまでの各項は有限個しかないから、その絶対値には最大値があるわ。結局、どんなnに対してもanの絶対値はすべてある値以下だから有界との結論が得られるわ」
山田がメガトンの解説に納得する。
「メガトンの言う通りだ。『論理的な収束の定義』は、無限のものを有限の世界で考えさせてくれる」
まだよく理解できない浜口は、家に帰ったら解析概論を読み返そうと決心する。
クォーターの姉御肌の気遣いは確実に浜口を変えている。
そして、先輩の浜口を無意識のうちに頑是ない弟扱いしている。
だが、浜口はクォーターの意図にも子供扱いされていることにも気が付かない。
ただひたすらに美女に良いところを見せたいと力んでいる。
そんな浜口の下請けで、小テスト対策の予想問題を喜々として考え考え作成するメガトンは、より深く解析学を理解していく。
理解したつもりの理論を別の角度からおさらいする作業が、メガトンの成長を力強く後押しする。
もちろん、そのことにクォーターを含め誰も気が付かない。
[注6]実数の列anが、実数aに収束するとの極限の定義。
任意の正の数ε(イプシロン)が与えられたとき、少なくとも一つの自然数Nが存在し、この自然数Nより大きいすべての自然数nに対して、anとaの差の絶対値がεより小さい、つまり、anとaの差が、±εの範囲に収まる。
新規登録で充実の読書を
- マイページ
- 読書の状況から作品を自動で分類して簡単に管理できる
- 小説の未読話数がひと目でわかり前回の続きから読める
- フォローしたユーザーの活動を追える
- 通知
- 小説の更新や作者の新作の情報を受け取れる
- 閲覧履歴
- 以前読んだ小説が一覧で見つけやすい
アカウントをお持ちの方はログイン
ビューワー設定
文字サイズ
背景色
フォント
組み方向
機能をオンにすると、画面の下部をタップする度に自動的にスクロールして読み進められます。
応援すると応援コメントも書けます