第16話 計算例 𝑭 ο ⟮n⟯

 ■■■■■■■

 ■ 計算例 ■

 ■■■■■■■


 ❶

  𝑭 ο_ω ⟮0⟯=

 𝑭 ƒο_ω ⟮0⟯=

 𝑭 (3,P₂¹,3) ⟮0⟯=

 𝑭 (3,3,3) ⟮0⟯=

 𝑭 ƒ(3,3,3) ⟮0⟯=

  𝑭 (𝐍𝐞𝐬𝐭[0],3) ⟮0⟯=

  𝑭 (3,3) ⟮0⟯=

  𝑭 ƒ(3,3) ⟮0⟯=

  𝑭 (P₂¹) ⟮0⟯=

  𝑭 (3) ⟮0⟯=

  𝑭 ƒ(3) ⟮0⟯=

  𝑭 P₂¹ ⟮0⟯=

  𝑭 3 ⟮0⟯=

  0+1=

  1


 ❷

  𝑭 ο_ω ⟮1⟯=

  𝑭 ƒο_ω ⟮1⟯=

  𝑭 (3,P₃¹,3) ⟮1⟯=

  𝑭 (3,5,3) ⟮1⟯=

  𝑭 ƒ(3,5,3) ⟮1⟯=

  𝑭 (𝐂𝐥𝐮𝐬𝐭[1]) ⟮1⟯=

  𝑭 (𝐂𝐥𝐮𝐬𝐭[0],3) ⟮1⟯=

  𝑭 (3,3) ⟮1⟯=

  𝑭 ƒ(3,3) ⟮1⟯=

  𝑭 (P₂²) ⟮1⟯=

  𝑭 (9) ⟮1⟯=

  𝑭 ƒ(9) ⟮1⟯=

  𝑭 𝐒𝐮𝐦[1] ⟮1⟯=

  𝑭 (3)𝐒𝐮𝐦[0] ⟮1⟯=

  𝑭 (3) ⟮1⟯=

  𝑭 ƒ(3) ⟮1⟯=

  𝑭 P₂² ⟮1⟯=

  𝑭 9 ⟮1⟯=

  𝑭¹ 3 ⟮1⟯=

  𝐧𝐞𝐬𝐭[1]=

  𝑭 3 ⟮𝐧𝐞𝐬𝐭[0]⟯=

  𝑭 3 ⟮1⟯=

  1+1=

  2

 

 ❸

  𝑭 ο_ω ⟮2⟯=

  𝑭 ƒο_ω ⟮2⟯=

  𝑭 (3,P₄¹,3) ⟮2⟯=

  𝑭 (3,7,3) ⟮2⟯=

  𝑭 ƒ(3,7,3) ⟮2⟯=

  𝑭 (3,𝐏𝐇[2],3) ⟮2⟯=

  𝑭 (3,(5,(7,11,7),5),3) ⟮2⟯=

  𝑭 (3,(5,(7,11,7),5),3) ⟮2⟯=

  C₀:(3,(5,(7,11,7),5),3)

  C₁:(5,(7,11,7),5)

  C₂ᴱᴺᴰ:(7,11,7)

  𝑭 (𝐂𝐥𝐮𝐬𝐭[2]) ⟮2⟯=

  𝑭 (𝐂𝐥𝐮𝐬𝐭[1],【(5,(7,11,7),5)ƒ𝓜₁】,3) ⟮2⟯=

  ・𝓜₁=

  ・ƒ(5,(7,11,7),5)=

  ・(𝐂𝐥𝐮𝐬𝐭[2])=

  ・(𝐂𝐥𝐮𝐬𝐭[1],【(7,11,7)ƒ𝓜₂ᴱᴺᴰ】,5)=

   ・𝓜₂ᴱᴺᴰ=

   ・ƒ(7,11,7)=

   ・(𝐂𝐥𝐮𝐬𝐭[2])=

   ・(𝐂𝐥𝐮𝐬𝐭[1],7)=

   ・(𝐂𝐥𝐮𝐬𝐭[0],7,7)=

   ・(7,7,7)

  ・(𝐂𝐥𝐮𝐬𝐭[1],【(7,11,7)ƒ(7,7,7)】,5)=

  ・(𝐂𝐥𝐮𝐬𝐭[0],【(7,11,7)ƒ(7,7,7)】,5,【(7,11,7)ƒ(7,7,7)】,5)=

  ・(5,【(7,11,7)ƒ(7,7,7)】,5,【(7,11,7)ƒ(7,7,7)】,5)=

  ・(5,(7,7,7),5,(7,7,7),5)=

  𝑭 (𝐂𝐥𝐮𝐬𝐭[1],【(5,(7,11,7),5)ƒ(5,(7,7,7),5,(7,7,7),5)】,3) ⟮2⟯=

  𝑭 (𝐂𝐥𝐮𝐬𝐭[0],【(5,(7,11,7),5)ƒ(5,(7,7,7),5,(7,7,7),5)】,3,【(5,(7,11,7),5)ƒ(5,(7,7,7),5,(7,7,7),5)】,3) ⟮2⟯=

  𝑭 (3,【(5,(7,11,7),5)ƒ(5,(7,7,7),5,(7,7,7),5)】,3,【(5,(7,11,7),5)ƒ(5,(7,7,7),5,(7,7,7),5)】,3) ⟮2⟯=

  𝑭 (3,(5,(7,7,7),5,(7,7,7),5),3,(5,(7,7,7),5,(7,7,7),5),3) ⟮2⟯=


 ❹

  𝑭 (3,5,3) ⟮2⟯=

  𝑭 ƒ(3,5,3) ⟮2⟯=

  𝑭 (𝐂𝐥𝐮𝐬𝐭[2]) ⟮2⟯=

  𝑭 (𝐂𝐥𝐮𝐬𝐭[1],3) ⟮2⟯=

  𝑭 (𝐂𝐥𝐮𝐬𝐭[0],3,3) ⟮2⟯=

  𝑭 (3,3,3) ⟮2⟯=

  𝑭 ƒ(3,3,3) ⟮2⟯=

  𝑭 (𝐍𝐞𝐬𝐭[2],3) ⟮2⟯=

  𝑭 ((𝐍𝐞𝐬𝐭[1],3),3) ⟮2⟯=

  𝑭 (((𝐍𝐞𝐬𝐭[0],3),3),3) ⟮2⟯=

  𝑭 (((3,3),3),3) ⟮2⟯=

  𝑭 ƒ(((3,3),3),3) ⟮2⟯=

  𝑭 (ƒ((3,3),3),3) ⟮2⟯=

  𝑭 ((ƒ(3,3),3),3) ⟮2⟯=

  𝑭 (((27),3),3) ⟮2⟯=

  𝑭 ƒ(((27),3),3) ⟮2⟯=

  𝑭 (ƒ((27),3),3) ⟮2⟯=

  𝑭 ((ƒ(27),3),3) ⟮2⟯=

  𝑭 ((𝐒𝐮𝐦[2],3),3) ⟮2⟯=

  𝑭 (((9)𝐒𝐮𝐦[1],3),3) ⟮2⟯=

  𝑭 (((9)(9)𝐒𝐮𝐦[0],3),3) ⟮2⟯=

  𝑭 (((9)(9),3),3) ⟮2⟯=

  𝑭 ƒ(((9)(9),3),3) ⟮2⟯=

  𝑭 (ƒ((9)(9),3),3) ⟮2⟯=

  𝑭 ((ƒ(9)(9),3),3) ⟮2⟯=

  𝑭 (((9)ƒ(9),3),3) ⟮2⟯=

  𝑭 (((9)𝐒𝐮𝐦[2],3),3) ⟮2⟯=

  𝑭 (((9)(3)𝐒𝐮𝐦[1],3),3) ⟮2⟯=

  𝑭 (((9)(3)(3)𝐒𝐮𝐦[0],3),3) ⟮2⟯=

  𝑭 (((9)(3)(3),3),3) ⟮2⟯=

  𝑭 ƒ(((9)(3)(3),3),3) ⟮2⟯=

  𝑭 (ƒ((9)(3)(3),3),3) ⟮2⟯=

  𝑭 ((ƒ(9)(3)(3),3),3) ⟮2⟯=

  𝑭 (((9)(3)ƒ(3),3),3) ⟮2⟯=

  𝑭 (((9)(3)27,3),3) ⟮2⟯=

  𝑭 ƒ(((9)(3)27,3),3) ⟮2⟯=

  𝑭 (ƒ((9)(3)27,3),3) ⟮2⟯=

  𝑭 (((9)(3)9,𝐍𝐞𝐬𝐭[2]),3) ⟮2⟯=

  𝑭 (((9)(3)9,((9)(3)9,𝐍𝐞𝐬𝐭[1])),3) ⟮2⟯=

  𝑭 (((9)(3)9,((9)(3)9,((9)(3)9,𝐍𝐞𝐬𝐭[0]))),3) ⟮2⟯=

  𝑭 (((9)(3)9,((9)(3)9,((9)(3)9,3))),3) ⟮2⟯=

  𝑭 ƒ(((9)(3)9,((9)(3)9,((9)(3)9,3))),3) ⟮2⟯=

  𝑭 (ƒ((9)(3)9,((9)(3)9,((9)(3)9,3))),3) ⟮2⟯=

  𝑭 (((9)(3)9, ƒ((9)(3)9,((9)(3)9,3))),3) ⟮2⟯=

  𝑭 (((9)(3)9,((9)(3)9, ƒ((9)(3)9,3))),3) ⟮2⟯=

  𝑭 (((9)(3)9,((9)(3)9,((9)(3),𝐍𝐞𝐬𝐭[2]))),3) ⟮2⟯=

  𝑭 (((9)(3)9,((9)(3)9,((9)(3),((9)(3),((9)(3),𝐍𝐞𝐬𝐭[0]))))),3) ⟮2⟯=

  𝑭 (((9)(3)9,((9)(3)9,((9)(3),((9)(3),((9)(3),3))))),3) ⟮2⟯


 ❺

  𝑭 (3,3) ⟮2⟯=

  𝑭 ƒ(3,3) ⟮2⟯=

  𝑭 (27) ⟮2⟯=

  𝑭 ƒ(27) ⟮2⟯=

  𝑭 𝐒𝐮𝐦[2] ⟮2⟯=

  𝑭 (9)𝐒𝐮𝐦[1] ⟮2⟯=

  𝑭 (9)(9)𝐒𝐮𝐦[0] ⟮2⟯=

  𝑭 (9)(9) ⟮2⟯=

  𝑭 ƒ(9)(9) ⟮2⟯=

  𝑭 (9)ƒ(9) ⟮2⟯=

  𝑭 (9)𝐒𝐮𝐦[2] ⟮2⟯=

  𝑭 (9)(3)𝐒𝐮𝐦[1] ⟮2⟯=

  𝑭 (9)(3)(3)𝐒𝐮𝐦[0] ⟮2⟯=

  𝑭 (9)(3)(3) ⟮2⟯=

  𝑭 ƒ(9)(3)(3) ⟮2⟯=

  𝑭 (9)(3)ƒ(3) ⟮2⟯=

  𝑭 (9)(3)27 ⟮2⟯=

  𝑭² (9)(3)9 ⟮2⟯=

  𝐧𝐞𝐬𝐭[2]=

  𝑭 (9)(3)9 ⟮𝐧𝐞𝐬𝐭[1]⟯=

  𝑭 (9)(3)9 ⟮𝑭 (9)(3)9 ⟮𝐧𝐞𝐬𝐭[0]⟯⟯=

  𝑭 (9)(3)9 ⟮𝑭 (9)(3)9 ⟮2⟯⟯=

  𝑭 (9)(3)9 ⟮𝑭² (9)(3) ⟮2⟯⟯=

  𝑭 (9)(3)9 ⟮𝐧𝐞𝐬𝐭[2]⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝐧𝐞𝐬𝐭[1]⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)(3)⟮𝐧𝐞𝐬𝐭[0]⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)(3)⟮2⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 ƒ(9)(3)⟮2⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)ƒ(3)⟮2⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)27⟮2⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭² (9)9⟮2⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝐧𝐞𝐬𝐭[2]⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)9⟮𝐧𝐞𝐬𝐭[1]⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)9⟮𝑭 (9)9⟮𝐧𝐞𝐬𝐭[0]⟯⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)9⟮𝑭 (9)9⟮2⟯⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)9⟮𝑭² (9)⟮2⟯⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)9⟮𝐧𝐞𝐬𝐭[2]⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)9⟮ 𝑭 (9)⟮𝐧𝐞𝐬𝐭[1]⟯⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)9⟮ 𝑭 (9)⟮𝑭 (9)⟮𝐧𝐞𝐬𝐭[0]⟯⟯⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)9⟮ 𝑭 (9)⟮𝑭 (9)⟮2⟯⟯⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)9⟮ 𝑭 (9)⟮𝑭 ƒ(9)⟮2⟯⟯⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)9⟮ 𝑭 (9)⟮𝑭 𝐒𝐮𝐦[2]⟮2⟯⟯⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)9⟮ 𝑭 (9)⟮𝑭 (3)𝐒𝐮𝐦[1]⟮2⟯⟯⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)9⟮ 𝑭 (9)⟮𝑭 (3)(3)𝐒𝐮𝐦[0]⟮2⟯⟯⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)9⟮ 𝑭 (9)⟮𝑭 (3)(3)⟮2⟯⟯⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)9⟮ 𝑭 (9)⟮𝑭 ƒ(3)(3)⟮2⟯⟯⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)9⟮ 𝑭 (9)⟮𝑭 (3)ƒ(3)⟮2⟯⟯⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)9⟮ 𝑭 (9)⟮𝑭 (3)27⟮2⟯⟯⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)9⟮ 𝑭 (9)⟮𝑭² (3)9⟮2⟯⟯⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)9⟮ 𝑭 (9)⟮𝐧𝐞𝐬𝐭[2]⟯⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)9⟮ 𝑭 (9)⟮𝑭 (3)9⟮𝐧𝐞𝐬𝐭[1]⟯⟯⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)9⟮ 𝑭 (9)⟮𝑭 (3)9⟮𝑭 (3)9⟮𝐧𝐞𝐬𝐭[0]⟯⟯⟯⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)9⟮ 𝑭 (9)⟮𝑭 (3)9⟮𝑭 (3)9⟮2⟯⟯⟯⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)9⟮ 𝑭 (9)⟮𝑭 (3)9⟮𝑭² (3)⟮2⟯⟯⟯⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)9⟮ 𝑭 (9)⟮𝑭 (3)9⟮𝐧𝐞𝐬𝐭[2]⟯⟯⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)9⟮ 𝑭 (9)⟮𝑭 (3)9⟮𝑭 (3)⟮𝐧𝐞𝐬𝐭[1]⟯⟯⟯⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)9⟮ 𝑭 (9)⟮𝑭 (3)9⟮𝑭 (3)⟮𝑭 (3)⟮𝐧𝐞𝐬𝐭[0]⟯⟯⟯⟯⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)9⟮ 𝑭 (9)⟮𝑭 (3)9⟮𝑭 (3)⟮𝑭 (3)⟮2⟯⟯⟯⟯⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)9⟮ 𝑭 (9)⟮𝑭 (3)9⟮𝑭 (3)⟮𝑭 ƒ(3)⟮2⟯⟯⟯⟯⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)9⟮ 𝑭 (9)⟮𝑭 (3)9⟮𝑭 (3)⟮𝑭 27⟮2⟯⟯⟯⟯⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)9⟮ 𝑭 (9)⟮𝑭 (3)9⟮𝑭 (3)⟮8⟯⟯⟯⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)9⟮ 𝑭 (9)⟮𝑭 (3)9⟮𝑭 ƒ(3)⟮8⟯⟯⟯⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)9⟮ 𝑭 (9)⟮𝑭 (3)9⟮𝑭 19683⟮8⟯⟯⟯⟯⟯⟯=

  𝑭 (9)(3)9 ⟮ 𝑭 (9)(3)⟮𝑭 (9)9⟮ 𝑭 (9)⟮𝑭 (3)9⟮𝑭⁸ 6561⟮8⟯⟯⟯⟯⟯⟯


 ❻

  𝑭 27 ⟮3⟯=

  𝑭³ 9 ⟮3⟯=

  𝐧𝐞𝐬𝐭[3]=

 𝑭 9 ⟮𝐧𝐞𝐬𝐭[2]⟯=

 𝑭 9 ⟮𝑭 9 ⟮𝐧𝐞𝐬𝐭[1]⟯⟯=

 𝑭 9 ⟮𝑭 9 ⟮𝑭 9 ⟮𝐧𝐞𝐬𝐭[0]⟯⟯⟯=

 𝑭 9 ⟮𝑭 9 ⟮𝑭 9 ⟮3⟯⟯⟯=

 𝑭 9 ⟮𝑭 9 ⟮𝑭³ 3 ⟮3⟯⟯⟯=

 𝑭 9 ⟮𝑭 9 ⟮𝐧𝐞𝐬𝐭[3]⟯⟯=

 𝑭 9 ⟮𝑭 9 ⟮ 𝑭 3 ⟮𝐧𝐞𝐬𝐭[2]⟯⟯⟯=

 𝑭 9 ⟮𝑭 9 ⟮ 𝑭 3 ⟮ 𝑭 3 ⟮𝐧𝐞𝐬𝐭[1]⟯⟯⟯⟯=

 𝑭 9 ⟮𝑭 9 ⟮ 𝑭 3 ⟮ 𝑭 3 ⟮𝑭 3 ⟮𝐧𝐞𝐬𝐭[0]⟯⟯⟯⟯⟯=

 𝑭 9 ⟮𝑭 9 ⟮ 𝑭 3 ⟮ 𝑭 3 ⟮𝑭 3 ⟮3⟯⟯⟯⟯⟯=

 𝑭 9 ⟮𝑭 9 ⟮ 𝑭 3 ⟮ 𝑭 3 ⟮4⟯⟯⟯⟯=

 𝑭 9 ⟮𝑭 9 ⟮ 𝑭 3 ⟮5⟯⟯⟯=

 𝑭 9 ⟮𝑭 9 ⟮6⟯⟯=

 中略

 𝑭 9 ⟮12⟯=

 24


 ❼

  𝑭 81 ⟮3⟯=

  𝑭³ 27 ⟮3⟯=

 𝐧𝐞𝐬𝐭[3]=

  𝑭 27 ⟮𝐧𝐞𝐬𝐭[2]⟯=

  𝑭 27 ⟮𝑭 27 ⟮𝐧𝐞𝐬𝐭[1]⟯⟯=

  𝑭 27 ⟮𝑭 27 ⟮𝑭 27 ⟮𝐧𝐞𝐬𝐭[0]⟯⟯⟯=

  𝑭 27 ⟮𝑭 27 ⟮𝑭 27 ⟮3⟯⟯⟯=

 中略

  𝑭 27 ⟮𝑭 27 ⟮24⟯⟯=

 中略

  𝑭 27 ⟮402653184⟯=

 中略

 2⁴⁰²⁶⁵³¹⁸⁴×402653184


 ❽

  𝑭 (3)9 ⟮3⟯=

  𝑭³ (3) ⟮3⟯=

 𝐧𝐞𝐬𝐭[3]=

 𝑭 (3) ⟮𝐧𝐞𝐬𝐭[2]⟯=

  𝑭 (3) ⟮𝑭 (3) ⟮𝐧𝐞𝐬𝐭[1]⟯⟯=

  𝑭 (3) ⟮𝑭 (3) ⟮𝑭 (3) ⟮𝐧𝐞𝐬𝐭[0]⟯⟯⟯=

  𝑭 (3) ⟮𝑭 (3) ⟮𝑭 (3) ⟮3⟯⟯⟯=

  𝑭 (3) ⟮𝑭 (3) ⟮𝑭 ƒ(3) ⟮3⟯⟯⟯=

  𝑭 (3) ⟮𝑭 (3) ⟮𝑭 81 ⟮3⟯⟯⟯=

 中略

  𝑭 (3) ⟮𝑭 (3) ⟮2⁴⁰²⁶⁵³¹⁸⁴×402653184⟯⟯=

  𝑭 (3) ⟮𝑭 ƒ(3) ⟮2⁴⁰²⁶⁵³¹⁸⁴×402653184⟯⟯=

  𝑭 (3) ⟮𝑭 P₂ ⁿ⁺¹ ⟮2⁴⁰²⁶⁵³¹⁸⁴×402653184⟯⟯

  • Xで共有
  • Facebookで共有
  • はてなブックマークでブックマーク

作者を応援しよう!

ハートをクリックで、簡単に応援の気持ちを伝えられます。(ログインが必要です)

応援したユーザー

応援すると応援コメントも書けます

新規登録で充実の読書を

マイページ
読書の状況から作品を自動で分類して簡単に管理できる
小説の未読話数がひと目でわかり前回の続きから読める
フォローしたユーザーの活動を追える
通知
小説の更新や作者の新作の情報を受け取れる
閲覧履歴
以前読んだ小説が一覧で見つけやすい
新規ユーザー登録無料

アカウントをお持ちの方はログイン

カクヨムで可能な読書体験をくわしく知る