Factorization of N=pq are partially in P

某 匿名

簡単な証明

Hypothesis


 N=pq  p and q are large prime respectively.

R=q/p q > p R is very close to an small integer or a simple rational number.


N=pq can be factorized in time polynomial


Proof

point[p, q] is on y=N/x

y=N/x and y=Rx cross at point[p, q]

N is n digit

upper 2 digits N2 round off the 3rd digit

upper 4 digits N4 round off the 5th digit


y=N2/x and y=Rx cross at point[p2,q2]

y=N4/x and y=Rx cross at point[p4, p4]


We only know N.


Let line up candidates point[p2,q2] and point[p4,q4]


N2 < 99 i=1..10 j=1..10

R2=i/j

f2=N2/R2 - j^2

dn2=abs(N2-R2*j^2)


N4 < 9999 i=1..99 j=1.. sqrt(N4)

R4=i/j

f4=N4/R4 - j^2

dn4=abs(N4-R4*j^2)


Point[j, i] that have small f2 and dn2 can be nominated as candidate for point[p2, q2]

Point[j, i] that have small f3 and dn4 can be nominated as candidate for point[p4, q4]


Find cross point[px, qx] of y=R2x and y=N/x , y=R4x and y=N/x

Find the nearest prime pn for px and the nearest prime qn for qx


pn*qn=N bingo!


Number of candidates are finit.

You can factorized N=pq in time polynomial.


Q.E.D. ?

  • Xで共有
  • Facebookで共有
  • はてなブックマークでブックマーク

作者を応援しよう!

ハートをクリックで、簡単に応援の気持ちを伝えられます。(ログインが必要です)

応援したユーザー

応援すると応援コメントも書けます

Factorization of N=pq are partially in P 某 匿名 @ChaosVagueness

★で称える

この小説が面白かったら★をつけてください。おすすめレビューも書けます。

フォローしてこの作品の続きを読もう

この小説のおすすめレビューを見る

この小説のタグ